Cyclic branched covers of alternating knots

نویسندگان

چکیده

For any integer n>2, the n-fold cyclic branched cover M of an alternating prime knot K in 3-sphere determines K, meaning that if ′ is a not equivalent to then its cannot be homeomorphic M.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Type Invariants of Cyclic Branched Covers

Given a knot in an integer homology sphere, one can construct a family of closed 3-manifolds (parametrized by the positive integers), namely the cyclic branched coverings of the knot. In this paper we give a formula for the the Casson-Walker invariants of these 3-manifolds in terms of residues of a rational function (which measures the 2-loop part of the Kontsevich integral of a knot) and the s...

متن کامل

On cyclic branched coverings of prime knots

The Torelli subgroup of Out(Fn) Mladen Bestvina, Utah The group in the title is the kernel of the natural map Out(Fn) –> GLn(Z). As for the classical mapping class group counterparts (except for the work of Mess in low genus), the basic features such as the dimension and finiteness properties are unknown. I will describe an approach to an understanding to these groups that leads to a complete s...

متن کامل

Knot Floer homology in cyclic branched covers

In this paper, we introduce a sequence of invariants of a knot K in S3 : the knot Floer homology groups ĤFK(Σm(K); K̃, i) of the preimage of K in the m–fold cyclic branched cover over K . We exhibit ĤFK(Σm(K); K̃, i) as the categorification of a well-defined multiple of the Turaev torsion of Σm(K)− K̃ in the case where Σm(K) is a rational homology sphere. In addition, when K is a two-bridge knot, ...

متن کامل

Branched Cyclic Covers and Finite Type Invariants

This work identifies a class of moves on knots which translate to m-equivalences of the associated p-fold branched cyclic covers, for a fixed m and any p (with respect to the Goussarov-Habiro filtration). These moves are applied to give a flexible (if specialised) construction of knots for which the Casson-Walker-Lescop invariant (for example) of their p-fold branched cyclic covers may be readi...

متن کامل

Linking Numbers in Rational Homology 3-spheres, Cyclic Branched Covers and Infinite Cyclic Covers

We study the linking numbers in a rational homology 3-sphere and in the infinite cyclic cover of the complement of a knot. They take values in Q and inQ(Z[t, t−1]) respectively, where Q(Z[t, t−1]) denotes the quotient field of Z[t, t−1]. It is known that the modulo-Z linking number in the rational homology 3-sphere is determined by the linking matrix of the framed link and that the modulo-Z[t, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Lebesgue

سال: 2021

ISSN: ['2644-9463']

DOI: https://doi.org/10.5802/ahl.89